[rael-science] Researchers show that memories reside in specific brain cells

วันศุกร์ที่ 13 เมษายน พ.ศ. 2555

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Raelian Movement
for those who are not afraid of the future : http://www.rael.org   
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Source: http://web.mit.edu/newsoffice/2012/conjuring-memories-artificially-0322.html

Researchers show that memories reside in specific brain cells

Simply activating a tiny number of neurons can conjure an entire memory.
Cathryn Delude, Picower Institute for Learning and Memory
March 22, 2012

Our fond or fearful memories — that first kiss or a bump in the night — leave memory traces that we may conjure up in the remembrance of things past, complete with time, place and all the sensations of the experience. Neuroscientists call these traces memory engrams. 

But are engrams conceptual, or are they a physical network of neurons in the brain? In a new MIT study, researchers used optogenetics to show that memories really do reside in very specific brain cells, and that simply activating a tiny fraction of brain cells can recall an entire memory — explaining, for example, how Marcel Proust could recapitulate his childhood from the aroma of a once-beloved madeleine cookie.

“We demonstrate that behavior based on high-level cognition, such as the expression of a specific memory, can be generated in a mammal by highly specific physical activation of a specific small subpopulation of brain cells, in this case by light,” says Susumu Tonegawa, the Picower Professor of Biology and Neuroscience at MIT and lead author of the study reported online today in the journal Nature. “This is the rigorously designed 21st-century test of Canadian neurosurgeon Wilder Penfield’s early-1900s accidental observation suggesting that mind is based on matter.” 

In that famous surgery, Penfield treated epilepsy patients by scooping out parts of the brain where seizures originated. To ensure that he destroyed only the problematic neurons, Penfield stimulated the brain with tiny jolts of electricity while patients, who were under local anesthesia, reported what they were experiencing. Remarkably, some vividly recalled entire complex events when Penfield stimulated just a few neurons in the hippocampus, a region now considered essential to the formation and recall of episodic memories. 

Scientists have continued to explore that phenomenon but, until now, it has never been proven that the direct reactivation of the hippocampus was sufficient to cause memory recall.

Shedding light on the matter


Fast forward to the introduction, seven years ago, of optogenetics, which can stimulate neurons that are genetically modified to express light-activated proteins. “We thought we could use this new technology to directly test the hypothesis about memory encoding and storage in a mimicry experiment,” says co-author Xu Liu, a postdoc in Tonegawa’s lab.

“We wanted to artificially activate a memory without the usual required sensory experience, which provides experimental evidence that even ephemeral phenomena, such as personal memories, reside in the physical machinery of the brain,” adds co-author Steve Ramirez, a graduate student in Tonegawa’s lab.

The researchers first identified a specific set of brain cells in the hippocampus that were active only when a mouse was learning about a new environment. They determined which genes were activated in those cells, and coupled them with the gene for channelrhodopsin-2 (ChR2), a light-activated protein used in optogenetics. 

Next, they studied mice with this genetic couplet in the cells of the dentate gyrus of the hippocampus, using tiny optical fibers to deliver pulses of light to the neurons. The light-activated protein would only be expressed in the neurons involved in experiential learning — an ingenious way to allow for labeling of the physical network of neurons associated with a specific memory engram for a specific experience. 

Finally, the mice entered an environment and, after a few minutes of exploration, received a mild foot shock, learning to fear the particular environment in which the shock occurred. The brain cells activated during this fear conditioning became tagged with ChR2. Later, when exposed to triggering pulses of light in a completely different environment, the neurons involved in the fear memory switched on — and the mice quickly entered a defensive, immobile crouch. 

False memory

This light-induced freezing suggested that the animals were actually recalling the memory of being shocked. The mice apparently perceived this replay of a fearful memory — but the memory was artificially reactivated. “Our results show that memories really do reside in very specific brain cells,” Liu says, “and simply by reactivating these cells by physical means, such as light, an entire memory can be recalled.” 

Referring to the 17th-century French philosopher who wrote, “I think, therefore I am,” Tonegawa says, “René Descartes didn’t believe the mind can be studied as a natural science. He was wrong. This experimental method is the ultimate way of demonstrating that mind, like memory recall, is based on changes in matter.”

“This remarkable work exhibits the power of combining the latest technologies to attack one of neurobiology’s central problems,” says Charles Stevens, a professor in the 
Molecular Neurobiology Laboratory at the Salk Institute who was not involved in this research. “Showing that the reactivation of those nerve cells that were active during learning can reproduce the learned behavior is surely a milestone.”

The method may also have applications in the study of neurodegenerative and neuropsychiatric disorders. “The more we know about the moving pieces that make up our brains,” Ramirez says, “the better equipped we are to figure out what happens when brain pieces break down.”

Other contributors to this study were Karl Deisseroth of Stanford University, whose lab developed optogenetics, and Petti T. Pang, Corey B. Puryear and Arvind Govindarajan of the RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory at MIT. The work was supported by the National Institutes of Health and the RIKEN Brain Science Institute.


-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"Ethics" is simply a last-gasp attempt by deist conservatives and
orthodox dogmatics to keep humanity in ignorance and obscurantism,
through the well tried fermentation of fear, the fear of science and
new technologies.
 
There is nothing glorious about what our ancestors call history, 
it is simply a succession of mistakes, intolerances and violations.
 
On the contrary, let us embrace Science and the new technologies
unfettered, for it is these which will liberate mankind from the
myth of god, and free us from our age old fears, from disease,
death and the sweat of labour.
 
Rael
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 
Tell your friends that they can subscribe to this list by sending an email to:
subscribe@rael-science.org
- - -
To unsubscribe, send an email to:
unsubscribe@rael-science.org
- - -

0 ความคิดเห็น:

แสดงความคิดเห็น

Copyright Text

WARNING FROM RAEL: For those who don't use their intelligence at its
full capacity, the label "selected by RAEL" on some articles does not
mean that I agree with their content or support it. "Selected by RAEL"
means that I believe it is important for the people of this planet to
know about what people think or do, even when what they think or do is
completely stupid and against our philosophy. When I selected articles
in the past about stupid Christian fundamentalists in America praying
for rain, I am sure no Rael-Science reader was stupid enough to
believe that I was supporting praying to change the weather. So, when
I select articles which are in favor of drugs, anti-semitic,
anti-Jewish, racist, revisionist, or inciting hatred against any group
or religion, or any other stupid article, it does not mean that I
support them. It just means that it is important for all human beings
to know about them. Common sense, which is usually very good among our
readers, is good enough to understand that. When, like in the recent
articles on drug decriminalization, it is necessary to make it
clearer, I add a comment, which in this case was very clear: I support
decriminalizing all drugs, as it is stupid to throw depressed and sad
people (as only depressed and sad people use drugs) in prison and ruin
their life with a criminal record. That does not mean that there is
any change to the Message which says clearly that we must not use any
drug except for medical purposes. The same applies to the freedom of
expression which must be absolute. That does not mean again of course
that I agree with anti-Jews, antisemites, racists of any kind or
anti-Raelians. But by knowing your enemies or the enemies of your
values, you are better equipped to fight them. With love and respect
of course, and with the wonderful sentence of the French philosopher
Voltaire in mind: "I disapprove of what you say, but I will defend to
the death your right to say it".