[rael-science] Human Cadaver Brains May Provide New Stem Cells‏

วันอังคารที่ 23 ตุลาคม พ.ศ. 2555




1 สิ่งที่แนบมา (61.5 กิโลไบต์)
ดาวน์โหลด 24005-human-cadaver-brains-stem-cells.html (40.0 กิโลไบต์)
24005-hum...html
ดาวน์โหลด(40.0 กิโลไบต์)
~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Raelian Movement
for those who are not afraid of the future : http://www.rael.org   
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Source: http://www.livescience.com/24005-human-cadaver-brains-stem-cells.html

Human Cadaver Brains May Provide New Stem Cells

Charles Choi, LiveScience Contributor
Date: 16 October 2012 Time: 07:40 AM ET

induced pluripotent stem cells
Researchers produced pluripotent stem cells from the fibroblast cells in the brain lining of human corpses. Here, the stem cells are shown expressing various markers and differentiating into neurons..
CREDIT: PLoS ONE 7(9): e45282. doi:10.1371/journal.pone.0045282 
Death will come for us all one day, but life will not fade from our bodies all at once. After our lungs stop breathing, our hearts stop beating, our minds stop racing, our bodies cool, and long after our vital signs cease, little pockets of cells can live for days, even weeks. Now scientists have harvested such cells from the scalps and brain linings of human corpses and reprogrammed them into stem cells.
In other words, dead people can yield living cellsthat can be converted into any cell or tissue in the body.
As such, this work could help lead to novel stem cell therapies and shed light on a variety of mental disorders, such as schizophrenia, autism and bipolar disorder, which may stem from problems with development, researchers say.
Making stem cells
Mature cells can be made or induced to become immature cells, known as pluripotent stem cells, which have the ability to become any tissue in the body and potentially can replace cells destroyed by disease or injury. This discovery was honored last week with the Nobel Prize.
Past research showed this same process could be carried out with so-called fibroblasts taken from the skin of human cadavers. Fibroblasts are the most common cells of connective tissue in animals, and they synthesize the extracellular matrix, the complex scaffolding between cells. [Science of Death: 10 Tales from the Crypt]
Cadaver-collected fibroblasts can be reprogrammed into induced pluripotent stem cells using chemicals known as growth factors that are linked with stem cell activity. Reprogrammed cells could then develop into a multitude of cell types, including the neurons found in the brain and spinal cord. However, bacteria and fungi on the skin can wreak havoc on the culturing processes used to grow cells in labs, making the process tricky to successfully carry out.
Now scientists have taken fibroblasts from the scalps and the brain linings of 146 human brain donors and grown induced pluripotent stem cells from them as well.
"We were able to culture living cells from deceased individuals on a larger scale than ever done before," researcher Thomas Hyde, a neuroscientist, neurologist and chief operating officer at the Lieber Institute for Brain Development in Baltimore, told LiveScience. Previous studies had only grown fibroblasts from a total of about a half-dozen cadavers.
The bodies had been dead up to nearly two days before scientists collected tissues from them. The corpses had been kept cool in the morgue, but not frozen.
The researchers found fibroblasts taken from the brain lining, or dura mater, were 16 times more likely to grow successfully than those from the scalp. This was expected, since the scalp is prone to fungal and bacterial contamination just like any other part of the skin. These contaminants can ruin any attempt to grow fibroblasts in lab dishes.
Surprisingly, scalp cells did proliferate more and grew more rapidly than dura mater cells. "This makes sense — the skin is constantly renewing, while the turnover in dura mater is much slower," Hyde said.
Future therapies
Cells from corpses might play a key role in developing future stem cell therapies. Successfully reprogramming induced pluripotent stem cells so they behave like the cells they are meant to replace means that samples of the mimicked cells must be present for comparison. Cadavers can provide brain, heart and other tissues for study that researchers cannot safely obtain from living people.
"For instance, we can compare neurons derived from fibroblasts with actual neurons from the same individual," Hyde said. "It tells us about how reliable a given method for deriving neurons from fibroblasts is. That can be crucial if, for example, you want to create dopamine-making neurons to treat someone with Parkinson's disease."
Studying how induced pluripotent stem cells develop into various tissues could also shed light on disorders that are due to malfunctions in development.
"We're very interested in major neuropsychiatric disorders such as schizophrenia, bipolar disease, autism and mental retardation," Hyde said. "By understanding what goes wrong with the brain cells in these individuals, we could perhaps help fix that."
The scientists detailed their findings online Sept. 27 in the journal PLoS ONE.


-- 
-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"Ethics" is simply a last-gasp attempt by deist conservatives and
orthodox dogmatics to keep humanity in ignorance and obscurantism,
through the well tried fermentation of fear, the fear of science and
new technologies.
 
There is nothing glorious about what our ancestors call history, 
it is simply a succession of mistakes, intolerances and violations.
 
On the contrary, let us embrace Science and the new technologies
unfettered, for it is these which will liberate mankind from the
myth of god, and free us from our age old fears, from disease,
death and the sweat of labour.
 
Rael
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 
Tell your friends that they can subscribe to this list by sending an email to:
subscribe@rael-science.org
- - -
To unsubscribe, send an email to:
unsubscribe@rael-science.org
- - -
 
 
 


--สิ่งที่แนบมาที่เป็นข้อความส่งต่อ--

Human Cadaver Brains May Provide New Stem Cells

Charles Choi, LiveScience Contributor
Date: 16 October 2012 Time: 07:40 AM ET
induced pluripotent stem cells
Researchers produced pluripotent stem cells from the fibroblast cells in the brain lining of human corpses. Here, the stem cells are shown expressing various markers and differentiating into neurons..
CREDIT: PLoS ONE 7(9): e45282. doi:10.1371/journal.pone.0045282 
Death will come for us all one day, but life will not fade from our bodies all at once. After our lungs stop breathing, our hearts stop beating, our minds stop racing, our bodies cool, and long after our vital signs cease, little pockets of cells can live for days, even weeks. Now scientists have harvested such cells from the scalps and brain linings of human corpses and reprogrammed them into stem cells.
In other words, dead people can yield living cellsthat can be converted into any cell or tissue in the body.
As such, this work could help lead to novel stem cell therapies and shed light on a variety of mental disorders, such as schizophrenia, autism and bipolar disorder, which may stem from problems with development, researchers say.
Making stem cells
Mature cells can be made or induced to become immature cells, known as pluripotent stem cells, which have the ability to become any tissue in the body and potentially can replace cells destroyed by disease or injury. This discovery was honored last week with the Nobel Prize.
Past research showed this same process could be carried out with so-called fibroblasts taken from the skin of human cadavers. Fibroblasts are the most common cells of connective tissue in animals, and they synthesize the extracellular matrix, the complex scaffolding between cells. [Science of Death: 10 Tales from the Crypt]
Cadaver-collected fibroblasts can be reprogrammed into induced pluripotent stem cells using chemicals known as growth factors that are linked with stem cell activity. Reprogrammed cells could then develop into a multitude of cell types, including the neurons found in the brain and spinal cord. However, bacteria and fungi on the skin can wreak havoc on the culturing processes used to grow cells in labs, making the process tricky to successfully carry out.
Now scientists have taken fibroblasts from the scalps and the brain linings of 146 human brain donors and grown induced pluripotent stem cells from them as well.
"We were able to culture living cells from deceased individuals on a larger scale than ever done before," researcher Thomas Hyde, a neuroscientist, neurologist and chief operating officer at the Lieber Institute for Brain Development in Baltimore, told LiveScience. Previous studies had only grown fibroblasts from a total of about a half-dozen cadavers.
The bodies had been dead up to nearly two days before scientists collected tissues from them. The corpses had been kept cool in the morgue, but not frozen.
The researchers found fibroblasts taken from the brain lining, or dura mater, were 16 times more likely to grow successfully than those from the scalp. This was expected, since the scalp is prone to fungal and bacterial contamination just like any other part of the skin. These contaminants can ruin any attempt to grow fibroblasts in lab dishes.
Surprisingly, scalp cells did proliferate more and grew more rapidly than dura mater cells. "This makes sense — the skin is constantly renewing, while the turnover in dura mater is much slower," Hyde said.
Future therapies
Cells from corpses might play a key role in developing future stem cell therapies. Successfully reprogramming induced pluripotent stem cells so they behave like the cells they are meant to replace means that samples of the mimicked cells must be present for comparison. Cadavers can provide brain, heart and other tissues for study that researchers cannot safely obtain from living people.
"For instance, we can compare neurons derived from fibroblasts with actual neurons from the same individual," Hyde said. "It tells us about how reliable a given method for deriving neurons from fibroblasts is. That can be crucial if, for example, you want to create dopamine-making neurons to treat someone with Parkinson's disease."
Studying how induced pluripotent stem cells develop into various tissues could also shed light on disorders that are due to malfunctions in development.
"We're very interested in major neuropsychiatric disorders such as schizophrenia, bipolar disease, autism and mental retardation," Hyde said. "By understanding what goes wrong with the brain cells in these individuals, we could perhaps help fix that."
The scientists detailed their findings online Sept. 27 in the journal PLoS ONE.
MORE FROM LiveScience.com
MORE ARTICLES
Previous Article     Next Article
Facebook Activity
FACEBOOK ACTIVITY
TWITTER
TWITTER ACTIVITY

0 ความคิดเห็น:

แสดงความคิดเห็น

Copyright Text

WARNING FROM RAEL: For those who don't use their intelligence at its
full capacity, the label "selected by RAEL" on some articles does not
mean that I agree with their content or support it. "Selected by RAEL"
means that I believe it is important for the people of this planet to
know about what people think or do, even when what they think or do is
completely stupid and against our philosophy. When I selected articles
in the past about stupid Christian fundamentalists in America praying
for rain, I am sure no Rael-Science reader was stupid enough to
believe that I was supporting praying to change the weather. So, when
I select articles which are in favor of drugs, anti-semitic,
anti-Jewish, racist, revisionist, or inciting hatred against any group
or religion, or any other stupid article, it does not mean that I
support them. It just means that it is important for all human beings
to know about them. Common sense, which is usually very good among our
readers, is good enough to understand that. When, like in the recent
articles on drug decriminalization, it is necessary to make it
clearer, I add a comment, which in this case was very clear: I support
decriminalizing all drugs, as it is stupid to throw depressed and sad
people (as only depressed and sad people use drugs) in prison and ruin
their life with a criminal record. That does not mean that there is
any change to the Message which says clearly that we must not use any
drug except for medical purposes. The same applies to the freedom of
expression which must be absolute. That does not mean again of course
that I agree with anti-Jews, antisemites, racists of any kind or
anti-Raelians. But by knowing your enemies or the enemies of your
values, you are better equipped to fight them. With love and respect
of course, and with the wonderful sentence of the French philosopher
Voltaire in mind: "I disapprove of what you say, but I will defend to
the death your right to say it".